DS - BST

Binary Search Tree (BST) in Data Structures

A Binary Search Tree (BST) is a special kind of binary tree where each node follows a specific ordering property:

  • Left Subtree: Contains nodes with values less than the node’s value.
  • Right Subtree: Contains nodes with values greater than the node’s value.
  • Both left and right subtrees must also be binary search trees.

🔍 Properties of BST

  1. Binary Tree Structure: Each node has at most two children.
  2. Ordered: Left child < Parent < Right child
  3. No Duplicate Values: Typically, BSTs don’t allow duplicate elements.

⚙️ Operations on a BST

OperationTime ComplexityDescription
SearchO(log n) (Balanced) / O(n) (Unbalanced)Find if an element exists.
InsertO(log n) (Balanced) / O(n) (Unbalanced)Add a new element.
DeleteO(log n) (Balanced) / O(n) (Unbalanced)Remove an element.
TraversalO(n)Visit all nodes (In-order, Pre-order, Post-order).

🔗 Types of Traversal in BST

  1. In-order (Left, Root, Right): Returns elements in sorted order.
  2. Pre-order (Root, Left, Right): Useful for copying the tree.
  3. Post-order (Left, Right, Root): Useful for deleting the tree.

💻 Implementation of a Binary Search Tree

 1#include <stdio.h>
 2#include <stdlib.h>
 3
 4struct BinaryTreeNode
 5{
 6    int key;
 7    struct BinaryTreeNode *left, *right;
 8};
 9
10struct BinaryTreeNode *newNodeCreate(int value)
11{
12    struct BinaryTreeNode *temp = (struct BinaryTreeNode *)malloc(
13        sizeof(struct BinaryTreeNode));
14    temp->key = value;
15    temp->left = temp->right = NULL;
16    return temp;
17}
18
19struct BinaryTreeNode *
20insertNode(struct BinaryTreeNode *node, int value)
21{
22    if (node == NULL)
23    {
24        return newNodeCreate(value);
25    }
26    if (value < node->key)
27    {
28        node->left = insertNode(node->left, value);
29    }
30    else if (value > node->key)
31    {
32        node->right = insertNode(node->right, value);
33    }
34    return node;
35}
36
37void postOrder(struct BinaryTreeNode *root)
38{
39    if (root != NULL)
40    {
41        postOrder(root->left);
42        postOrder(root->right);
43        printf(" %d ", root->key);
44    }
45}
46void inOrder(struct BinaryTreeNode *root)
47{
48    if (root != NULL)
49    {
50        inOrder(root->left);
51        printf(" %d ", root->key);
52        inOrder(root->right);
53    }
54}
55
56void preOrder(struct BinaryTreeNode *root)
57{
58    if (root != NULL)
59    {
60        printf(" %d ", root->key);
61        preOrder(root->left);
62        preOrder(root->right);
63    }
64}
65int main()
66{
67    struct BinaryTreeNode *root = NULL;
68
69    root = insertNode(root, 50);
70    insertNode(root, 30);
71    insertNode(root, 20);
72    insertNode(root, 40);
73    insertNode(root, 70);
74    insertNode(root, 60);
75    insertNode(root, 80);
76    postOrder(root);
77    printf("\n");
78
79    preOrder(root);
80    printf("\n");
81
82    inOrder(root);
83    printf("\n");
84    return 0;
85}

Advantages of a Binary Search Tree

  • Efficient searching, insertion, and deletion when the tree is balanced.
  • Provides sorted data through in-order traversal.
  • Can be extended to more advanced trees (e.g., AVL Tree, Red-Black Tree).

Disadvantages of BST

  • Performance degrades to O(n) if the tree becomes unbalanced (like a linked list).
  • Requires self-balancing (AVL, Red-Black) for consistently good performance.

🔄 Applications of BST

  • Searching and sorting operations
  • Implementing associative arrays
  • In-memory data structures like sets and maps
  • Used in databases for indexing